3. In case a second parameter is believed to influence productivity,

a design of experiment (DoE) reduces experimental load.

4. Obtained effects of productivity at given temperature can then

be applied for continuous cultivation.

References

1. Glaser JA (2015) Continuous chemical pro-

duction processes. Clean Techn Environ Policy

17(2):309–316.

https://doi.org/10.1007/

s10098-015-0903-3

2. Burcham CL, Florence AJ, Johnson MD

(2018) Continuous manufacturing in pharma-

ceutical

process

development

and

manufacturing. Annu Rev Chem Biomol Eng

9:253–281.

https://doi.org/10.1146/

annurev-chembioeng-060817-084355

3. Lee SL, O’Connor TF, Yang X, Cruz CN,

Chatterjee S, Madurawe RD et al (2015) Mod-

ernizing Pharmaceutical Manufacturing: from

Batch to Continuous Production. J Pharm

Innov

10(3):191–199.

https://doi.org/10.

1007/s12247-015-9215-8

4. Herbert D, Elsworth R, Telling RC (1956)

The continuous culture of bacteria; a theoreti-

cal and experimental study. J Gen Microbiol 14

(3):601–622.

https://doi.org/10.1099/

00221287-14-3-601

5. Monod J (1949) Adaptation, mutation and

segregation in relation to the synthesis of

enzymes by bacteria. Biochem J 44(3):xix

6. Monod J (1949) The growth of bacterial cul-

tures. Annu Rev Microbiol 3(1):371–394.

https://doi.org/10.1146/annurev.mi.03.

100149.002103

7. Novick A, Szilard L (1950) Description of the

chemostat.

Science

112(2920):715–716.

https://doi.org/10.1126/science.112.2920.

715

8. Novick A, Szilard L (1950) Experiments with

the chemostat on spontaneous mutations of

bacteria. Proc Natl Acad Sci U S A 36

(12):708–719.

https://doi.org/10.1073/

pnas.36.12.708

9. Novick A, Szilard L (1951) Experiments on

spontaneous and chemically induced mutations

of bacteria growing in the Chemostat. Cold

Spring Harb Symp Quant Biol 16:337–343

10. Kopp J, Slouka C, Spadiut O, Herwig C

(2019) The Rocky Road From fed-batch to

continuous processing with E. coli. Front

Bioeng Biotechnol 7:328

11. Rugbjerg P, Sommer MOA (2019) Overcom-

ing genetic heterogeneity in industrial fermen-

tations.

Nat

Biotechnol

37(8):869–876.

https://doi.org/10.1038/s41587-019-0171-

6

12. Buerger J, Gronenberg LS, Genee HJ, Sommer

MOA (2019) Wiring cell growth to product

formation. Curr Opin Biotechnol 59:85–92.

https://doi.org/10.1016/j.copbio.2019.02.

014

13. Rugbjerg P, Myling-Petersen N, Porse A,

Sarup-Lytzen

K,

Sommer

MOA

(2018)

Diverse genetic error modes constrain large-

scale bio-based production. Nat Commun 9

(1):787.

https://doi.org/10.1038/s41467-

018-03232-w

14. Schreiber F, Littmann S, Lavik G, Escrig S,

Meibom A, Kuypers MMM et al (2016) Phe-

notypic heterogeneity driven by nutrient limi-

tation

promotes

growth

in

fluctuating

environments.

Nat

Microbiol

1(6):16055.

https://doi.org/10.1038/nmicrobiol.

2016.55

15. Ackermann M (2015) A functional perspective

on phenotypic heterogeneity in microorgan-

isms.

Nat

Rev

Microbiol

13(8):497–508.

https://doi.org/10.1038/nrmicro3491

16. Delvigne F, Baert J, Sassi H, Fickers P,

Gru¨nberger A, Dusny C (2017) Taking control

over microbial populations: current approaches

for exploiting biological noise in bioprocesses.

Biotechnol

J

12(7):1600549.

https://doi.

org/10.1002/biot.201600549

17. Peebo K, Neubauer P (2018) Application of

continuous culture methods to recombinant

protein production in microorganisms. Micro-

organisms 6(3):56. https://doi.org/10.3390/

microorganisms6030056

18. Kittler S, Kopp J, Veelenturf PG, Spadiut O,

Delvigne F, Herwig C et al (2020) The Lazarus

Escherichia coli effect: recovery of productivity

on glycerol/lactose mixed feed in continuous

biomanufacturing. Front Bioeng Biotechnol

8:993

19. Vogel

JH,

Nguyen

H,

Giovannini

R,

Ignowski J, Garger S, Salgotra A et al (2012)

A new large-scale manufacturing platform for

complex

biopharmaceuticals.

Biotechnol

Bioeng

109(12):3049–3058.

https://doi.

org/10.1002/bit.24578

238

Julian Kopp and Oliver Spadiut